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Abstract

Ua VLSI CAD systems are typically large and undergo frequent changes.
A frustrating aspect of these changes is that so little of the old avail-
time and effiort to find the reusable pieces and recast them for the new

use.We believe that such systems should be designed for reusability by
anticipating change. Our thesis is that this goal can be achieved by
designing the software as layers of problem oriented languages, which
are implemented by suitably extending a,"base", language. A language
layer rarely needs to be adapted to changes, only the application (i.e.
algorithm) needs to be changed.

,"  We illustrate this methodology with respect to VLSI CAD pro-
grams and a particular language layer: a language for handling net-
works. A concept shared by many CAD programs is that of networks
consisting of components and their interconnects. We capture this
common part by providing a languagefor handling network problems.
Such a language consists of our, "bse" language (EC or Lisp) plus
data types, operations and control structures that are relevant to net-
work problems. The network language is but one of several languages
used; other languages we use deal with sets, two dimensional layout
structures, waveforms, etc. The discussion of the network language
illustrates this technique.

We present two different implementations of the above philosophy.
The first uses UNIX and Enhanced C, a set oriented language support-
ing data abstractions based on C. The second approach uses Common
Lisp on a Lisp machine. In each case, we describe the basic technique
and its applications. We conclude by comparing the two approaches. -.
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Abstract

VLSI CAD systems are typically large and undergo frequent changes.
A frustrating aspect of these changes is that so little of the old avail-
able programs can be reused. The reason is that it takes too much
time and effort to find the reusable pieces and recast them for the new
use.

We believe that such systems should be designed for reusability by

anticipating change. Our thesis is that this goal can be achieved by
designing the software as layers of problem oriented languages, which
are implemented by suitably extending a "base" language. A language
layer rarely needs to be adapted to changes, only the application (i.e.
algorithm) needs to be changed.

We illustrate this methodology with respect to VLSI CAD pro-
grams and a particular language layer: a language for handling net-
works. A concept shared by many CAD programs is that of networks

consisting of components and their interconnetts. We capture this
common part by providing a language for handling network problems.

Such a language consists of our "base" language (EC or Lisp) plus
data types, operations and control structures that are relevant to net-
work problems. The network language is but one of several languages

* used; other languages we use deal with sets, two dimensional layout

structures, waveforms, etc. The discussion of the network language
illustrates this technique.

We present two different implementations of the above philosophy.
The first uses UNIX and Enhanced C, a set oriented language support-

ing data abstractions based on C. The second approach uses Common
Lisp on a Lisp machine. In each case, we describe the basic technique.
and its applications. Weconclude by comparing the two approaches.
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Software Structuring Principles for VLSI CAD

Jacob Katzenelson Richard Zippel
Department of Electrical Engineering Symbolics, Inc.

Technion-Israel Institute of Technology 11 Cambridge Center
Haifa, Israel 32000 Cambridge, MA 02142

1. Introduction
CAD software systems are a collection of programs where the results of one pro-

gram are the inputs of another. These programs are large, complex and usually CPU
limited-often written independently and put together as the need arises. The pro-
grams are frequently changed. These changes may be due to changes in VLSI technol-
ogy, b)ut often they are also a result of the continuing evolution of the CAD algorithms
theinselves. A better understanding of an algorithm often leads to performance im-
proveiments or better use of the algorithm. These improvements may be conceptually
simple while their effect is pervasive, such as changing a datatype from a list to a 2-D

('.8 tree. As a result, a satisfying CAD system is a moving target.

A frustrating aspect of writing new systems is that so little of the old available
programs can be reused. The reason is that it takes too much time and effort to find
the reusable pieces and recast them for the new use. To reuse someone else's software
requires understanding the details of his or her program. Sometimes understanding
these unstructured details takes more effort than rewriting the program again.

We believe that such systems should be design for reusability by anticipating
change. Our thesis is that this goal can be achieved by designing the software by
layers of problem oriented languages. These languages are implemented by suitably
extending a "base" language.2

In this paper we illustrate the above methodology with respect to VLSI CAD
programs and a particular language layer: a language for handling networks. Networks
illade of components and their interconnections is a concept shared by many CAD
I)11 );a Ins. We capture that common part by providing a language for handling network
problems. Such a language consists of our "base" language (EC or Lisp) plus data -
types, operations and control structures that are relevant to network problems. The 13
network language is but one of several languages used; other languages we used deal

1 Currently on Sabbatical at the Artificial Intelligence Laboratory and Department of EECS at

MIT, Cambridge, MA 02139
2 Some of these problems cannot be eliminated as a result of the complexity of the algorithms ...
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with sets, two dimensional layout structures, waveforms, etc. The discussion of the
network language illustrates this technique.

A key part of the implementation technique is that the base language is extensi-
ble. We solve a particular set of problems by extending the base language, forming a
problem oriented language for the particular problem at hand (for example, a language
for manipulating waveforms or the network language discussed below). Of particular
importance are language layers that capture concepts intrinsic to the field. Design
based on such layers has the follow advantages:
(a) The programs are self documenting and document themselves concisely. The bulk

of the documentation describes the problem oriented language and not individual
programs.

(b) Changes involve writing a new algorithm in the same (problem oriented) language £

rather than writing a new language. This automatically ensures that new programs
use parts of old programs. These parts are the concepts encapsulated in the
language.

(c) The language rarely needs to be adapted to changes, only the application (i.e.
algorithm) has to be changed. Occasionally, the language may also need to be
extended.
We base our conviction in the power of the language approach upon the progress

made in other fields by developing languages to express problems and their solutions.
For example, one of Newton's major contribution to physics was the development of
Calculus which can be viewed as a collection of new concepts and ways of putting them
together. -

The changes in digital design field over the last two decades have been so drastic
that one wonders how the field maintained its unity. We claim that the stability of the
practitioners language, the TTL conventions, is the source of this unity. In spite of the
technological changes the language adapted remaining relatively constant, maintaining
comnnnication among workers in the field and preserving the field unity.

Consider another aspect of this same problem. Most conventional design method-
ologies begin with a specification of the system to be built. The specification should be

as ,'oniplete and as accurate as possible. Using this specification, the system is divided
into smaller systems, each with their own specification. These sub-systems can be
attacked independently since they need only satisfy their specifications. This method-
ology is generally known as structured design and is widely acclaimed and accepted.

We. however, feel that this methodology is inadequate for building large systems.
Th' key flaw in structured design is the reliance on the accuracy of the specification. For
s fhciently large systems, the specification is always incorrect. At the beginning of the
project. the project itself is not completely understood and neither are its components.
During the project, the better understanding the algorithms, data structures and their
ii es leads to modifications of the detailed specifications. At the of the project. what
was built may meet the original specification, which was not what the client really had
wanted. The client had not specified what he had thought he had specified.

2
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How can we deal with incorrect and ever changing specifications? We can only
assume that the evolving specification is not far wrong. It describes a family of systems
near the desired one. We suggest building a platform on which this nearby family
of systems can be built quickly. This platform is the problem oriented language we
advocate. This language simplifies the construction of the specified system, and when
the specification is modified, it is straightforward to build a new version of the system.
The platform itself remains constant in the face of changes in the specification, since it
depends upon the problem domain rather than a specific problem.

At this point an historical note is in order. In the LISP community, Joel Moses
was the first to suggest that layered languages would be an effective way of dealing
with design in the face of change. In the programming language community the related
notions are "problem oriented languages" and "extensible languages." The practice of
problein oriented languages leads to layers of languages. Conversely, the implementa-
tion of layers of languages leads uses language extensibility in order to build problem
oriented languages.

We start by presenting the common denominator for network problems-the lan-
guage for handling networks. We continue by presenting two different implementations
of the above philosophy. The first uses UNIX and Enhanced C [81, a set oriented lan-
guage supporting data abstractions based on C. The second approach uses Common
Lisp on a LisP machine [13, 15]. In each case, we describe the basic technique and
its applications. We conclude by comparing the two approaches. The two authors got

".A together to write this article when they discovered their goals and philosophy were
Csimilar, but their techniques differ.

The body of the paper is organized as follows. Section 2 describes a general network
framework for CAD that both the EC+UNIX and the LIsP approaches share. This
is the fundamental abstraction used in this paper. In Section 3, we discuss how EC
can be used to implement and take advantage of the network abstraction. Section 4
1)riefly summarizes the different approaches used by LIsP for the same problem. The
mn.thodology has been used for constructing logic simulators [71, VLSI layout system
[171 and a system for analyzing linear networks. In the final section we discuss the
practical experience gained by using the methodology and we also compare the two
apIroaches taken.

2. Basic Network Model and Its Language
We speak about entities that have endpoints. Networks are formed by identifying

(coiecting) endpoints of entities. An entity has properties that contain values. One
HtIli pr perty of an entity is its type. The vaue of the type property determines the

miimliiber and kind of the other properties that the entity has. In network problems we
hav, a type node and a type component. A node has a single endpoint that can only
1, ,'oiected to the endpoints of components. This is illustrated in figure 1. Clearly.
dli is a very general model- perhaps more general than required for networks. We are
11Wr i1te'r'sted in rinimal models, instead we show that the major network constructs

3
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Figure 1. An example of Nodes and Components

can be built simply within this model.
A hierarchical network is created by using a component, C, with a property parent

whose value is a network 77. The nodes of 7 are assigned an endpoint property that is
either "empty" or refers to a suitable endpoint of C.

A homological copy of a network is an important and useful concept [10]. A
homological copy of q is a another network p such that each node or component of 77 is
associated with a node or component of pt (possibly a many to one relation). Clearly
that association is a property of y's elements and p can be manipulated at will as longN.

as qj remains constant. As an example consider the schematics that a designer might
use to describe a circuit. The schematics have more spatial detail than would be needed
by a simulator which would work with a topological equivalent representation of the
schematics. This topology is a homological copy of the schematics. This concept of
homological copies is similar to the Sussman's Slices [16].

Around these entities we construct a language that enables us to handle these
entities. The language allows us to refer to and change their properties; perform trans-
formations on them and use the entities in more complex control structures. In more
technical terms, we define a language by defining constructors, selectors, various other
operations. and control abstractions that are appropriate to our network problems. The
following examples illustrate both the language and its use for writing CAD application

PrI ograms.

2.1 Displaying a Circuit
Each element of the network (both nodes and components) has a property, say

picture, whose value is (refers to) the code that displays the element picture on th,
-,'rOIL. In addition, there is a coordinates property that give the location of tlc
ehcijiet ,,n the screen. The following loop generates a picture of the network:

forall elements e of network N do
display-element (e)

display checks if e.picture is nil; if so, it recurses on e's subcircuit.

4
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display-element(element) {
if (element.picture == nil)

display-network(element, network)

else
element. picture(element. coordinates)

I

Obviously, the same sort of operations could be written in LISP. Throughout this
paper all of our LISP programs are written in Common Lisp [15]. We would begin by
writing a function that takes two arguments, The first is a network and the second is
a ficmtional argument that is applied to each element of the first argument. Call this
function map-over-elements.

(defun display-network (network)
(map-over-elements network

(function display-element)))

The display-network function displays a network by applying the function display-
element to each element of network. The form (function display-network) is re-

* turns the function associated with the identifier display-element. This extra bit
of complexity is needed because Common Lisp allows a value and a function to be
associated with the same symbol.

(defun display-element (element)
(if (null (picture element))

(display-network (network element))
(funcall (picture element) (coordinates element))))

2.2 Simulation
Consider the following examples of simulation programs: synchronous and asyn-

b Ichronous logic simulation, analog simulation, timing simulation [9], etc. Although quite
lifferent. these programs have much in common. Each can be generated by programs
that traverse the networks, using the properties of the network elements. In each case
the handling of the results is similar; result waveforms have to be associated with the
iitwork elements so that the user can refer to them as properties of the elements.

For each kind of simulation we need different network element properties and a
diffrent -generation function"-the function that generates the simulator from the
ietwork desc ription.

*j. .1*
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The above is illustrated by an example of a simple synchronous logic sinmilatiOll.
We assume that the behavior of each component, e, is a finite state machine described ,'
by

where *, is the state vector at time n and f, is the input vector at time n. For simplicity
assume that gn is also the output vector at time n and that inputs to all components
are outputs of other components. f, is called the device function.

The following simple program generates the simulation program.

forall elements e of network N do {
gen( state and next-state variable declarations for e)
gen("get-initial-conditions(e.state)" ) ; }

gen ("for (t = to ; t <= t max ; t++) {"),

forall elements e of network N do {
gen ("e.devicefun(e.inputs, e.state, e.next-state);" ) ;

gen ("forall elements e of network N do {
e.state = e.next-state;
store-results(e. state) ; }" );

gen ("}")'

The following LISP fragment implements the same functionality as the previous EC
one. In LISP we do not generate a program but we run directly off the data structure.
Notice also that we do not generate any variable declarations.

(map-over-elements N
(lambda (e) %A

(setf (state e) (initial-conditions e))))

(loop for t = to below t max

do (map-over-elements N
(lambda (e)

(push (funcall (devicefun e) (inputs e) (state e))

(state-history e)))))
(loop for t = to below t max

do (map-over-elements N
(lambda (e)

(setf (state e) (first (state-history e))))))

The special forms begining with lambda are used to create anonymous functions.
The special form setf is used to perform all assignments in Common Lisp. The state-
history slot of each element is a list of the states through which the element has passed.
The first component of state-history corresponds to the next-state variable used
in the EC program.

6I
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Vh1at these two approaches have in ,oninoit is that each element must contain its
dev\ice function, information aboat its state, initial conditions and connectivity. The
following remarks relate to these two versions of the simulation example.
(a ) The example is indeed straight forward. Some of the simplicity is a result of this

particular simulation method. Under the conditions stated, the order of the calls
to the device function in the time loop can be arbitrary.
However, we believe that given the appropriate network language the "core" of
the any network application is quite simple. That is, it is simple compared with
the layers of software around it the I/O package. the handling of libraries. the
manipulation of results, etc. In our case, these facilities are provided as part of
the software environment. They are provided as standard interfaces (driven by
sub-languages) to be used by any network application. The internal complexities
of these facilities are the user.

(1) The EC version generates a program. This program is compiled and run to produce
results. The L isp version is a program that runs to produce results. The techniques
and differences between the two apl)roaches are elaborated in the sequel.

(c) With each application, different information is associated with the network ele-

nlents.
((l) In all cases the computed results have to be associated with the original network

inolel to enable communications with the user.

3. Implementation using Enhanced C plus UNIX
, The design of Enhanced C (EC) and its philosophy are described in 18J. EC is a

-set-oriented, extensible. C-like language. Extensibility in EC involves the use of data
abstractions to define new types. EC's data abstractions, called clusters, are macro-like
devices that perform substitutions on the typed syntax tree. EC's set orientation and
data abstractions are important to our discussion. We shall elaborate on these topics
1,efOre describing the organization of the CAD system.

A set-oriented language is a language containing high level data aggregates. In EC
these are sets, sequences, tuples and "oneof's." The semantics of sets and sequences
are as in mathematics. As progranmming entities they may be thought of as the gen-
Nrulization of the array. Tiples and oneofs are the generalization of C's "structure"

;aid "union" respectively. With these data aggregates come expressions and control
sta,(,inents that resemble set usage in iatlenmatics; for example:

Let .5 be n set of a given type, and x an object the same type.

add .r to S;
exist x' in S suchthat < predicate>
forall x in S suchthat < predicate> do < statement>

Set (orientation helps program combinatorial problems, a type of problems common
in VLSI CAD. It provides a concise notation that, since it is part of our common
,'diictiain. helps in both programnming and documentation.

,,, V 
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Data abstractions are means of declaring new types. The following few lines ()f

code is an example of such a declaration. -'~

cluster list CT /* EC I*

mode T; where int T; I* EC 2/

{
/* This list implements a set of elements of type T storing copies of

elements in the list *

rep type list-Ant *1; /* EC 3 *

typedef struct {type list-A.t *next;
type T member; -

}list..st;

fun it doit( ..... .} /* EC 4*

oper void oper forall~elment~llist~st) /* EC 5 *

type T elment;

type list llist;
statement st;

type I p;

{elment =Cp->member);
at;

proc int oper add(elment,llist) /* EC 6 *

type T elment; type list llist;

type 1 P; /* declaration * ,

for (p =(type 1) salloc(sizeof(type list-at));
p->member = elment;
p->next =llist;
luist =P; 

-

result 1;

oper type list oper *(. .. { .. /* EC 7 *

constant type list oper nul(cluster-name) /* EC 8 *

cmode cluster-name; /* EC 9*/

(type l)nil

/* end cluster list *

or or

" 22 .0-1a% -A-



Atype is leffle(l by its represenita tioti ( EC 3) thle data Jv icetutre of a varial iN(
t Ii,, type: antd by a set of operations. Line EC 4 defines thle opera t i foral 1 wI ioM(

c;ll is1 as followvs:

forall element in llust do statenment

LineI EC 6 defines the opierat ion add. which inar 1w ised inl the following imm,1 ziner:

add element to llust

Lliw EC o)ver(idl -+- to, be the uniotii of two sets. Line EC 6 defines a constaiiO
null. the emlptv set.

The cluster opera tiolis are selected by their ila tue and the types of their, a1,111(i

p( )lvii1Tplic opera tions), e.g. *'" mlav dlenoteI the a cl~llt i of integers, the 1111i1Ofi
sesctc. The comipiler ,elects the applropriate opleratiOnl amon)Ig those built-int atiit

hei,( ( efiiuedl by thle iser.
Tile EC clusters are iparalti(teriz('(. E.g. T onl line EC 1 is a type: this cluster

diesa set of T. EC cluster operations canil be inilplenientedl by either lprocedlures or
ujuacTO.S. The formner case is illustrated onl line EC 6 (key word proc ) andl the later i.s
iillustratedl oil Iline EQ 5. The tutacros performn suli t itut ions onl the tv1)ed svnt~tx tree.

* MaIcro jimplemlent at ions of ('1 inst er opera tions have several interesting prop~ert ies.
They avoid the p)rocedure( ('all overhead amwd, when the b~ody of the op~eration is smlall
Omotigfh they prtoduce' codle that inay be botht fasteor and smraller. Since 1binding is

* (lone at comlpile tuine they accept both statemients and types as arguments and bind

r vi Les "by amie. They iiar return "lvalues" anid appear onl the left handl side of
lhe assignmilent st ateinlent

The following sections describie the general structure of the CAD systemi and thenl
dwell ott thle Ia migliage as~(ttha t are cenltrial to ourl dliscui5oni.

Fl.ire 2 stinniarizes Olie syste(in organilzatiloll as a set of data structures wvith the
er% t;tlvsfi u;tt ims fri tin owl (Ia t a strui ctutre to a notlher. The transforiations are relpre-

-. t'it e(l ;it arri )vs'.

-I'l(, npit I decr~d a ;il iput langiiaege. The coillpoieuits are dIescribedh Lv
o*iN tu a (ti ssi WvIZVr iut('rzeh type andt~ a liamec. For exanilple.

AND(WIRE(2)) al, a2;

(11 ;Iil (I. ;~a *its to 'v( cai utelits, of typte AND (Wire (2) ) . Wire (2) is a type and
I-Cil ;t' aI pa;tiat'Ili t)f tvl)n AND. :k (otilp(oliit scoiinectioins are (Ies('rilbed by stating
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Figure 2. CAD tools using EC

which endpoints are connected to which component's input endpoint. Although this
example does not show it, the input usually describes nested networks, i.e., components
are defined by means of networks.

The input language is processed by a program that we call the input processor - p
When that program encounters a type it searches the database for an appropriate type
description described below.

The database is arranged as Unix files and directories. A directory is devoted to
'ach type (the type's directory). Each such directory contains a file describing the com- "

jliOc'nt topology, i.e. names of endpoints, nature of endpoints (input, output, tri-state).
For each application the type directory contains a file describing the component's prop-
erties, e.g. power and size, and a file containing the cluster describing the behavior of
the type for each application.

The input processor uses the topology file for checking for input consistency and

builds a general network data structure describing the network (the network data struc-
ture in figure 2). Each element is described by an object (tuple) whose properties
(compnients) are the basic characteristics of the elements (name. endpoints) and the
application properties read from the application file.

The application translator is a program that runs on the general data structure amid
produces the application program. The application program is then translated by the
EC compiler into runnable code. using data abstractions called from the database. The
ob 'Ject code is run on the input to produce results. The (new) results are manipulated
hv a waveform program to produce other results that the user can view. print, or
,t o l,,rwise inspect.

For introducing a new application the user must provide the database entries for

10
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the a pplic'ation and, in particiilaiY, write tile al)p~lication1 tTra usia t( r. All othel faicilit i U
WVith EC ats the main tool the language usedl to write ain appllicat ion t ranislator i 1

11o mys-tery: it is EC proper plis a network cluster aild clusters for iinpleniiting sets.

sequlenices and tuples. Since the ipult usually defines nested inetworks, thle ne-twork
clu s ter conUt ainls op~erat ions t hat p~rodulce homological copies of iies te net v( )rks. F r.

ss.sequences. etc. the prograixinier uses the language facilities provided by EC amid

cisters h( either extracts fromi the stand~ardl library or writes hinlif. Th in et wm-k

chi st er i-eqires soniv addiltiona~l elaboration. -

Our net work elemnits have two kinds of lprolpert les:

" ]iropcries that are app~licationi jfleendlf't anid are ulsed to capture Thle iat limeW

fr the elements its part of at network. e.g. connectivity. We call t hese pr pert ie,

net work generic properties11

" Properties that are ap~plicat ion dependent. e.g. thle device funct ion inI the sum un~

ion ap~plication.

WXe Nvould like to generate one cluster whose representation and operations include
the go-leeuc operations and the application oriented properties. This is ani "Hilieri-

tmiemechanism thec new cluster inherits the p~roperties of the network cluster anw1

a ( 1)Seil0) cluster whose operations are the applicati ni dependemnt operations.
At this time. EC does not have auitomnatic inheritance [4, 3, 14] and this p)articuilar

inliitance is (lone in the wvay dlescrib~ed l)elo.,
I(1 The inpu~tt p)rocesor generates the network data structure as a fixed part per

compon~Hent with a -hook for appIlica tion dependent properties. Each applicatIOn1

dep('ndlent enItry' carries its name, its type and its value.
2) The cluster that contains the generic network op~eration is augmented by operations

hat access the application p)roper'tie's. These operations are picked up from the

dlatabase and inserted ( "include" style inotentokcutr

4. Use of Lisp Machines for CAD
SCIem A, was developed using Common Lisp on a Lisp machine. LISP is extremely

well suiitevl for building new languages. Several of the features of LISP contribuite

Htn p)rop)erty. Significant power is achieved through the use of data abstraction (as

em1 bodlive by flavors [41, wvhich includes inheritance). The free variables of p~rocedutre's
and1( fuinctions (caln be closed over to create closures. These closures are first class cit izeimls

aw icI all Iv pe1ass'ed to and from other functionls and storedl in data st ruct ires. Finally.
its- iiiiifoiiii sviitax (lack of it. simiplifies the creation of semntic extensionis. The utse

of iiac(r( ) allows these ext ensionis to be uicorpora ted smoothly.
At least two integrated VLSI CAD systems have been built -,!I Lisp machines.

SCiiFNIA [6] is being developed at MIT with thle hielp and collaboration of colleagues at
Mallis. Corp.. and NS [5] wvhich was developed at Synmbolics, Inc. These two sy'stemis

,ir a c ninion heritage from the Daedahts syte developed at MIIT [2] and many
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SCHIEMA was developed to handle all of the aspects of designing VLSI circuits.,.,- , "

Thus it contains tools for schematic entry, layout and simulation. Furthermore, it
is built upon a large body of tools that can be used to build additional CAD tools.
Because the entire design and all of the tools reside in a single address space a somewhat ,
lifferent approach needs to be taken than is used in a Unix environment. And yet.

there are still strong similarities with the approach used in EC. The following diagram
corresponds to figure 2 used to describe the EC organization

i bnp laetwgork bData uetbia i alC

Description 01 ctr

=Database 

Wvfr
(modules) Program

Figure 3. CAD tools using Schema 'S

As with EC, the core of the design system is the network description language. In v
S'IIMA this language is interpreted as a procedure for generating a memory resident
data structure that describes the topology of a circuit. In Figure 3 this is the "Input
Description." This language may make use of definitions of other circuits from a library. '
thus allowing the hierarchical description of circuit.

The data structure that results is not totally passive. Code can be attached to ,
(oiqponnts and nodes in the data structure. (This is the main use of objected oriented

,r,)gralniiiing in SCHEMA.) Some of the code is included in the input description while
,tler ('ode is added by application prograns. Thus a simulator might add code to
Ii(,,c tlie voltage and current constraints of a particular device.

The hierarchical network data structure is not optimal for simulation purposes.
For '',rtain types of simulations it contains too much detail (logical simulators arc not 1.

i'e '(lN with the construction of an AND gate) while for other simulation types
rI, hierarchical structure gets in the way. To (teal with both of these problems a

I itiological copy is built which has the optimal structure for the application program.
SCIHEIA provides mechanisms for building and operating on the homological copies.
whiclh are extensions of the network description language.
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or.,. In SCIHEMA both the network data qtructure and its homological copies reside in
nieiory simultaneously. The user tends to deal with the network data structure and~is often not aware of the homological copy. To case the use of the system, links are

preserved between the homological copy and the network data structure. This allows
questions about the result of simulations to be directed through the network data
structure to the homological copies.

Perhaps the feature of the Lisp Machine environment that distinguishes it the
most fromn Unix-like environments is that all the design tools, as well as the design

it'self, reside in a common address space. This characteristic makes it especially easy
for disparate CAD tools to communicate through shared data structures. For instance.
a schematic editor and a simulator are able to examine and modify a common data
structure that represents a topology thus simplifying both the user interface to the
s inulator and the creation of incremental analysis tools. Far less programmer time
is spent flattening data structures into text files and reparsing them for use in differ-

ent tools. The "language" in which the CAD tools are built can include higher level
primitives than text files. Furthermore. the co-residence of the different tools allows
one CAD tool to invoke another when information is lacking. Thus a circuit simulator
could invoke the layout program to inquire about the capacitances of different nodes.
This approach allows the tools to interact as collection of cooperating experts rather
tham a sequence of files transducers.

The major disadvantage of this approach is that modifications and annotations to
(-ta; structures persist until the next time the workstation is rebooted. This means
that modifications to data structures must either be able to be undone when necessary
or" are pernanent.

5. Practice and Experience

Two alplications were built with EC using this philosophy. The first is a simulator
for logic networks [7] that makes extensive use of the network layer mentioned earlier.
The second system does automatic layout in a fashion similar to PI [17, 12]. The same

n,,tiwork language layer was used to create nested networks, while most of the layout
;,lt,)ritlms were built on another layer consisting of EC, sets and sequences. This

vtcmi is intended as a testbed for a variety of different algorithms. The use of layered

la1u1iages made the expressions of the algorithms concise, readable and easy to modify.

The network language layer of S(iIEMA was used to build a variety of different
,,immlators andi as an interface to conventional circuit simulators like Spice [11]. In
fa verry large number of languages layers were used in SCHEMA. Among them were

lavrrs for graphic imaging, for building user interfaces, for editing graphical structures.
for dealing with lermanent version of the data structures in SC EMA, for manipulating
,ynl o lic mathematical expressions, etc. In each case. less experienced programmers
w,'r,, ale to construct rather sophisticated applications using the linguistic tools pro-
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6. Summary and Conclusions.)
The two systems share a common philosophy: To construct a CAD tool. fir-t

define a language that captures the concepts common to the field and widely accepted
by workers in the field. Next, build the CAD tool using this language. For example.
consider building a logic simulator. This simulator is an example of a class of programs
that manipulate networks. We begin with a network language, and then extend it
to one that is appropriate for constructing simulators. The logic simulator is written
in the simulation language. Notice that we build in "extra" generality. The network
language can be used for problems other than simulation. The simulation language can
be used for either logic simulation or circuit simulation.

This philosophy is implemented in a similar fashion in both systems. In both
,ases, the system is built on a base language, EC and LIsP respectively, with addition

1 roblein specific languages constructed by extending the base languages. In EC this
is (lone using clusters, where the macro oriented operations are used for implementing
control abstractions. In LISP this is done using flavors to implement data abstraction;
the control abstractions are implemented using macros and functional arguments.

The differences between these two systems revolve around two points: the large
address space used by LISP and the early binding by compilation used by EC. The
Lisp machine world uses a very large address space allowing many tools and their data
structures to co-exist, while the Unix/EC world places each tool in its own address
space and shares data through the file system. The Unix/EC world tends to bind early
have the compiler make as many decisions as possible, while the Lisp world delays those
(lecisions until run time. -

The large address space allows SCHEMA to rely on "in core" data structures rather N"
than using files. This allows CAD tools to share common data structures and to
communicate simply by passing pointers to these data structures. This environment
allows the tools to appear as an single program. This eliminates the need to translate to
;nd from characters to the data structures used by the CAD tools. Furthermore, CAD
tools are now abie to invoke other CAD tools more easily in this common environment.

The SCHEMA tools include the schematic entry system, the layout editor, simulator
atnd others. These tools share common network data structures, but often have slightly
diffrent structures for their own use. These tools and their data structures all co-exist
in the same large address space.

The early binding by compilation used by EC has advantages and disadvantages.
I'e disadvantages are that the communication between the results and the original
,jification of the network has to be done via files and dictionaries, which complicates S.

lh, CAD system. And if the application requires iteration across the boundaries be-
twcim CAD tools that application becomes quite expensive. The advantage of early
Ihining by compilation is the gain in run-time performance for CPU bounded problems.

The comparison between run-time performance of conventional machines running
,r,,mpiled EC and the Lisp machine running Lisp is not simple. We do not have signifi-
,*a.t rests that run in both environments. The Lisp system attains speed improvements
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Iw p!,ecial hardware and by compilation. We don't feel that there is any reason why
this method is should be inherently slower or faster than a conventional environment.

Currently a LIsP machine system is a relatively expensive item. The Unix system b
rums on conventional machines.
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